The superorder Palaeognathae is restricted to the order Struthioniformes comprising the following families:
Genus-level timetree of extant Palaeognathae based on Stiller et al.
(2024), with the distribution of each family being indicated by the colour-code used
throughout this website (Distribution code). The intrinsic phylogeny of
Tinamidae follows Almeida et al. (2022) and Musher et al. (2024).
Genus-level classification of extant Palaeognathae. Note that the genera Nothoprocta and Nothura, as currently defined, are not monophyletic. Also
note that Musher et al. (2024) provided convincing evidence that Nothoprocta pentlandii is not monophyletic.
Tinamidae (tinamous) are remarkable for being the only volant birds in a group of otherwise cursorial birds. The flying ability, however, is very poor. This phenomenon is the
greatest mystery in ornithology! It means that flight either must have been lost at least three times independantly within palaeognaths, or must have been gained independently from Neognathae in
tinamous.
Struthionidae (ostriches) are often regarded as a single species, Struthio camelus. However, mitochondrial DNA seems to justify the distinction of two species,
Struthio camelus (Common Ostrich) and Struthio molybdophanes (Somali Ostrich). The two species are thought to have separated from each other by the formation of the
East African Rift Valley some 4 Ma.
Extant ostriches are restricted to Africa, while the remaining palaeognaths (Notopalaeognathae) occur in South America, Australia, and New Zealand.
All palaeognaths, except the Struthionidae, exhibit paternal care, with incubation of the eggs relying entirely on the male (Birchard et al., 2013). In ostriches, the hen
incubates during the day and the cock during the night. Paternal care is a rather unusual reproductive trait (Owens, 2002) and should be considered a notopalaeognath
autapomorphy.
Palaeognaths also comprise several particularly interesting (sub-)fossil taxa:
References
Almeida FC, Porzecanski AL, Cracraft JL, and Bertelli S (2022), The evolution of tinamous (Palaeognathae: Tinamidae), in light of molecular and combined analyses, Zool. J. Linn. Soc. 195, 106-124. (free pdf)
Baker AJ, Haddrath O, McPherson JD, and Cloutier A (2014), Genomic support for a Moa-Tinamou clade and adaptive morphological convergence in flightless ratites, Mol. Biol. Evol. 31, 1686-96. (pdf)
Bertelli S, and Porzecanski AL (2003), Tinamou (Tinamidae) systematics: a preliminary combined analysis of morphology and molecules, Ornitol. Neotrop. 15 (suppl.), 293-299. (pdf)
Bertelli S, Chiappe LM, and Mayr G (2014), Phylogenetic interrelationships of living and extinct Tinamidae, volant palaeognathous birds from the New World, Zool. J. Linn. Soc. 172, 145-184. (abstract)
Birchard GF, Ruta M, and Deeming DC (2013), Evolution of parental incubation behaviour in dinosaurs cannot be inferred from clutch mass in birds, Biol. Lett. 9, e:4. (abstract)
Braun EL, and Kimball RT (2021) Data types and the phylogeny of Neoaves. Birds 2, 1-22. (free pdf)
Burleigh JG, Kimball RT, and Braun EL (2015), Building the avian tree of life using a large-scale, sparse supermatrix, Mol. Phylogenet. Evol. 84, 53-63. (abstract)
Choi S, Hauber ME, Legendre LJ, Kim NH, Lee YN, and Varricchio DJ (2023), Microstructural and crystallographic evolution of palaeognath (Aves) eggshells, Evol. Biol. (free pdf)
Cloutier A, Sackton TB, Grayson P, Clamp M, Baker AJ, and Edwards SV (2019), Whole-genome analyses resolve the phylogeny of flightless birds (Palaeognathae) in the presence of an empirical anomaly zone, Syst. Biol. 68, 937-955. (abstract)
Freitag S, and Robinson TJ (1993), Phylogeographic patterns in mitochondrial DNA of the Ostrich (Struthio camelus), Auk 110, 614-622. (pdf)
Grealy A, Phillips M, Miller G, Gilbert MTP, Rouillard JM, Lambert D, Bunce M, and Haile J (2017), Eggshell palaeogenomics: palaeognath evolutionary history revealed through ancient nuclear and mitochondrial DNA from Madagascan elephant bird (Aepyornis sp.) eggshell, Mol. Phylogen. Evol. 109, 151-169. (abstract)
Haddrath O, and Baker AJ (2012), Multiple nuclear genes and retroposons support vicariance and dispersal of the palaeognaths, and Early Cretaceous origin of modern birds. Proc. Royal Soc. B 279, 4617-25. (pdf)
Heine C, Zoethout J, and Müller RD (2013), Kinematics of the South Atlantic rift, Solid Earth 4, 215-253. (pdf)
Kimball RT, Oliveros CH, Wang N, White ND, Barker FK, Field DJ, Ksepka DT, Chesser RT, Moyle RG, Braun MJ, Brumfield RT, Faircloth BC, Smith BT, and Braun EL (2019), A phylogenomic supertree of birds, Diversity 11, e:109. (free pdf)
Kuhl H, Frankl-Vilches C, Bakker A, Mayr G, Nikolaus G, Boerno ST, Klages S, Timmermann B, and Gahr M (2021), An unbiased molecular approach using 3'UTRs resolves the avian family-level tree of life, Mol. Biol. Evol. 38, 108-127. (free pdf)
Mitchell KJ, Llamas B, Soubrier J, Rawlence, NJ, Worthy TH, Wood J, Lee MSY, and Cooper C (2014), Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolution, Science 344, 898-900. (abstract)
Musher LJ, Catanach TA, Valqui T, Brumfield RT, Aleixo A, Johnson KP, and Weckstein JD (2024), Whole-genome phylogenomics of the tinamous (Aves: Tinamidae): comparing gene tree estimation error between BUSCOs and UCEs illuminates rapid divergence with introgression, bioRxiv (pdf)
Owens IPF (2002), Male-only care and classical polyandry in birds: phylogeny, ecology and sex differences in remating opportunities, Phil. Trans. R. Soc. Lond. B 357, 283-293. (pdf)
Phillips MJ, Gibb GC, Crimp EA, and Penny D (2010), Tinamous and moa flock together: mitochondrial genome sequence analysis reveals independent losses of flight among ratites, Syst. Biol. 59, 90-107. (free pdf)
Pratt TK, and Beehler BN (2014), "Birds of New Guinea", 2nd edition, Princeton University Press. (link)
Prum RO, Berv JS, Dornburg A, Fields DJ, Townsend JP, Lemmon EM, and Lemmon AR (2015), A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569-573. (abstract)
Ramstad KM, and Dunning LT (2020), Population genomics advances and opportunities in conservation of kiwi (Apteryx spp.). In: Population Genomics, (Rajora OP, ed.), pages 1-29, Springer, Cham. (abstract)
Reddy S, Kimball RT, Pandey A, Hosner PA, Braun MJ, Hackett SJ, Han KL, Harshman J, Huddleston CJ, Kingston S, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Witt CC, Yuri T, and Braun EL (2017), Why do phylogenomic data sets yield conflicting trees? Data type influences the avian Tree of Life more than taxon sampling, Syst. Biol. 66, 857-879. (free pdf)
Sackton TB, Grayson P, Cloutier A, Hu Z, Liu JS, Wheeler NE, Gardner PP, Clarke JA, Baker AJ, Clamp M, and Edwards SV (2019), Convergent regulatory evolution and loss of flight in paleognathous birds. Science 364, 47-78. (link)
Shiba M (2023), Sunken continents inferred from divergence dating based on molecular phylogeny of terrestrial animals, New Conc. Global Tectonics J. 11, 145-166. (pdf)
Simmons MP, Springer MS, and Gatesy J (2021), Gene-tree misrooting drives conflicts in phylogenomic coalescent analyses of palaeognath birds, Mol. Phylogenet. Evol. 167, e:107344. (abstract)
Smith JV, Braun EL, and Kimball RT (2013), Ratite nonmonophyly: independent evidence from 40 novel loci. Syst. Biol. 62, 35-49. (pdf)
Springer MS, and Gatesy J (2019), Retroposon insertions within a multispecies coalescent framework suggest that ratite phylogeny is not in the 'anomaly zone'. bioRxiv, e:643296. (pdf)
Stiller J, Feng S, Chowdhury AA, Rivas-González I, Duchêne DA, Fang Q, Deng Y, Kozlov A, Stamatakis A, Claramunt S, Nguyen JMT, Ho SYW, Faircloth BC, Haag J, Houde P, Cracraft J, Balaban M, Mai U, Chen G, Gao R, Zhou C, Xie Y, Huang Z, Cao Z, Yan Z, Ogilvie HA, Nakhleh L, Lindow B, Morel B, Fjeldså J, Hosner PA, da Fonseca RR, Petersen B, Tobias JA, Székely T, Kennedy JD, Reeve AH, Liker A, Stervander M, Antunes A, Tietze DT, Bertelsen M, Lei F, Rahbek C, Graves GR, Schierup MH, Warnow T, Braun EL, Gilbert MTP, Jarvis ED, Mirarab S, and Zhang G (2024), Complexity of avian evolution revealed by family-level genomes, Nature (preview pdf)
Takezaki N (2023), Effect of different types of sequence data on palaeognath phylogeny, Genome Biol. Evol. 15, e:evad092. (free pdf)
Urantówka AD, Kroczak A, and Mackiewicz P (2020) New view on the organization and evolution of Palaeognathae mitogenomes poses the question on the ancestral rearrangement in Aves, BMC Genomics 21, e:874. (pdf)
Wang Z, Zhang J, Xu X, Witt C, Deng Y, Chen D, Meng G, Feng S, Szekely T, Zhang G, and Zhou Q (2019), Phylogeny, transposable element and sex chromosome evolution of the basal lineage of birds. BioRxiv. (pdf)
Wang Z, Zhang J, Xu X, Witt C, Deng Y, Chenc G, Meng G, Feng S, Xu L, Szekely T, Zhang G, and Zhou Q (2021), Phylogeny and sex chromosome evolution of Palaeognathae, J Genet. Genomics . (abstract)
Widrig K, and Field DJ (2022), The evolution and fossil record of palaeognathous birds (Neornithes: Palaeognathae), Diversity 14, e:105. (pdf)
Wu S, Rheindt FE, Zhang J, Wang J, Zhang L, Quan C, Li Z, Wang M, Wu F, Qu Y, Edwards SV, Zhou Z, and Liu L (2024), Genomes, fossils, and the concurrent rise of modern birds and flowering plants in the Late Cretaceous, Proc. Natl. Acad. Sci. 121. (pdf)
Yonezawa T, Segawa T, Mori H, Campos PF, Hongoh Y, Endo H, Akiyoshi A, Kohno N, Nishida S, Wu J, Jin H, Adachi J, Kishino H, Kurokawa K, Nogi Y, Tanabe H, Mukoyama H, Yoshida K, Rasoamiaramanana A, Yamagishi S, Hayashi Y, Yoshida A, Koike H, Akishinonomiya F, Willerslev E, and Hasegawa M (2017), Phylogenomics and morphology of extinct paleognaths reveal the origin and evolution of the ratites. Curr. Biol. 27, 68-77. (pdf)
Photos