The order Charadriiformes is here divided into three suborders.
SCOLOPACI:
LARI:
CHARADRII:
Family-level timetree of extant Charadriiformes, with the distribution of each family being indicated by the colour-code used throughout this website (Distribution code). The phylogeny is based on Ericson et al. (2003), Paton et al. (2003), Bridge et al. (2005), Paton & Baker (2006), Fain & Houde, (2007), Baker et al. (2007, 2012), Gibson & Baker (2012), Dos Remedios et al. (2015), Prum et al. (2015), and Kuhl et al. (2021). The position of monotypic Dromadidae is based on Pereira & Baker (2010) and Kuhl et al. (2021). Divergence times follow Kuhl et al. (2021).
Genus-level timetree of extant Scolopaci, with the distribution of each genus being indicated by the colour-code used throughout this website (Distribution code). The timetree is based on Paton et al. (2003), Baker et al. (2007), Gibson & Baker (2012), Hu et al. (2017), and Cerný & Natale (2021).
Genus-level timetree of extant Lari, with the distribution of each genus being indicated by the colour-code used throughout this website (Distribution code). The timetree is based on Paton et al. (2003), Baker et al. (2007), Pereira & Baker (2008), Hu et al. (2017), DiGiacomo (2018), and Cerný & Natale, 2022.
Genus-level timetree of extant Charadrii, with the distribution of each genus being indicated by the colour-code used throughout this website (Distribution code). The timetree is based on Paton et al. (2003), Baker et al. (2007), Barth et al. (2013), Hu et al. (2017), Cerný & Natale (2022), and Cerný et al. (2023).
References
Baker AJ, Pereira SL, and Paton TA (2007), Phylogenetic relationships and divergence times of Charadriiformes genera: multiple evidence for the Cretaceous origin of at least 14 clades of shorebirds, Biol. Lett. 3, 205-209. (abstract)
Baker AJ, and Pereira SL (2009), Shorebirds (Charadriiformes), in "The timetree of life", (Hedges, S.B. & Kumar, S., eds.), Oxford University Press, pp. 432-435. (pdf)
Baker AJ, Yatsenko Y, and Tavares ES (2012), Eight independent nuclear genes support monophyly of the Plovers: the role of mutational variance in gene trees, Mol. Phylogenet. Evol. 65, 631-641. (abstract)
Banks RC (2012), Classification and nomenclature of the sandpipers (Aves: Arenariinae), Zootaxa 3513, 86-88. (pdf)
Barth JMI, Matschiner M, and Robertson BC (2013), Phylogenetic position and subspecies divergence of the endangered New Zealand Dotterel (Charadrius obscurus), PLOS ONE 8, e:78068. (pdf)
Bridge ES, Jones AW, and Baker AJ (2005), A phylogenetic framework for the terns (Sternini) inferred from mtDNA sequences: implications for taxonomy and plumage evolution, Mol. Phylogenet. Evol. 35, 459-469. (abstract)
Burleigh JG, Kimball RT, and Braun EL (2015), Building the avian tree of life using a large-scale, sparse supermatrix, Mol. Phylogenet. Evol. 84, 53-63. (abstract)
Černý D, and Natale R (2022), Comprehensive taxon sampling and vetted fossils help clarify the time tree of shorebirds (Aves, Charadriiformes), Mol. Phylogenet. Evol. 177, e:107620. (abstract)
Černý D, van Els P, Natale R, and Gregory SMS (2023), A new genus-group name for Burhinus bistriatus (Wagler, 1829) and Burhinus superciliaris (Tschudi, 1843), Avian Syst. 1, 31-43. (pdf)
Chen W, Zhang C, Pan T, Liu W, Li K, Hu C, and Chang Q (2018), The mitochondrial genome of the Kentish Plover, Charadrius alexandrinus (Charadriiformes: Charadriidae) and phylogenetic analysis of Charadrii, Genes & Genomics 40, 955-963. (abstract)
Chen W, Liu W, Zhang C, Li K, Hu C, and Chang Q (2019), The mitochondrial genome of the red-necked stint Calidris ruficollis (Charadriiformes, Scolopacidae), Conservation Genet. Resour. 11, 181-184. (abstract)
Chen P, Huang Z, Zhu C, Han Y, Xu Z, Sun G, Zhang Z, Zhao D, Ge G, and Ruan L (2020), Complete mitochondrial genome and phylogenetic analysis of Gruiformes and Charadriiformes, Pakistan J. Zool. 52, 425-439. (free pdf)
Chen W, Miao K, Wang J, Wang H, Sun W, Yuan S, Luo S, Hu C, and Chang Q (2022), Five new mitogenomes sequences of Calidridine sandpipers (Aves: Charadriiformes) and comparative mitogenomics of genus Calidris, PeerJ 10, e:13268. (pdf)
Cohen C (2011), "The phylogenetics, taxonomy and biogeography of African arid Zone terrestrial birds: the bustards (Otididae), sandgrouse (Pteroclidae), coursers (Glareolidae) and Stone Partridge (Ptilopachus)", Ph.D. Dissertation, University of Cape Town. (free pdf)
Cracraft J, Barker FK, Braun M, Harshman J, Dyke GJ, Feinstein J, Stanley S, Cibois A, Schikler P, Beresford P, Garcia-Moreno J, Sorenson MD, Yuri T, and Mindell DP (2004), Phylogenetic relationships among modern birds (Neornithes): toward an avian tree of life, in "Assembling the Tree of Life", (Cracraft, J. and Donoghue, M.J., eds.), Oxford University Press, pp. 468-489. (pdf)
de Pietri VL, Worthy TH, Scofield RP, Cole TL, Wood JR, Mitchell KJ, Cibois A, Jansen JJFJ, Cooper AJ, Feng S, Chen W, Tennyson AJD, and Wragg GM (2021), A new extinct species of Polynesian sandpiper (Charadriiformes: Scolopacidae: Prosobonia), from Henderson Island, Pitcairn Group, and the phylogenetic relationships of Prosobonia, Zool. J. Linn. Soc. 192, 1045-70. (free pdf)
DiGiacomo AA (2018), "A phylogenetic analysis of extinct and extant Pan-Alcidae", Ph.D. Dissertation at the Montclair State University, New Jersey. (pdf)
Dos Remedios N, Küpper C, Lee PLM, Burke T, and Szekely T (2015), North or South? Phylogenetic and biogeographic origins of a globally distributed avian clade, Mol. Phylogenet. Evol. 89, 151-159. (abstract)
Ericson PGP, Envall I, Irestedt M, and Norman JA (2003), Inter-familial relationships of the shorebirds (Aves: Charadriiformes) based on nuclear DNA sequence data, BMC Evol. Biol. 3, e:16. (pdf)
Fain MG, and Houde P (2007), Multilocus perspectives on the monophyly and phylogeny of the order Charadriiformes, BMC Evol. Biol. 7, 35. (pdf)
Gibson R, and Baker A (2012), Multiple gene sequences resolve phylogenetic relationships in the shorebird suborder Scolopaci (Aves: Charadriiformes), Mol. Phylogenet. Evol. 64, 66-72. (abstract)
Hu C, Zhang C, Sun I, Zhang Y, Xie W, Zhang B, and Chang Q (2017), The mitochondrial genome of the pin-tailed snipe Gallinago stenura, and its implications for the phylogeny of Charadriiformes, PLOS ONE 12, e:0175244. (pdf)
Hu C, Xu X, Yao W, Liu W, Tai D, Chen W, and Chang Q (2021), Complete mitochondrial genome of the Eurasian Oystercatcher Haematopus ostralegus and comparative genomic analyses in Charadriiformes, Pakistan J. Zool. 53, 2407-15. (pdf)
Jackson DG, Emslie SD, and van Tuinen M (2012), Genome skimming identifies polymorphism in tern populations and species, BMC Research Notes 5, e:94. (pdf)
Kuhl H, Frankl-Vilches C, Bakker A, Mayr G, Nikolaus G, Boerno ST, Klages S, Timmermann B, and Gahr M (2021), An unbiased molecular approach using 3'UTRs resolves the avian family-level tree of life, Mol. Biol. Evol. 38, 108-127. (free pdf)
Li Q, Jiang P, Li M, Du J, Sun J, Chen N, Wu Y, Chang Q, and Hu C (2024), Structure and phylogenetic relationships of Scolopacidae mitogenomes (Charadriiformes: Scolopacidae), Curr. Issues Mol. Biol. 46, 6186-98. (free pdf)
Liu W, Hu C, Xie W, Chen P, Zhang Y, Yao R, Li K, and Chang Q (2018), The mitochondrial genome of red-necked phalarope Phalaropus lobatus (Charadriiformes: Scolopacidae) and phylogeny analysis among Scolopacidae, Genes & Genomics 40, 455-463. (abstract)
Mikkelsen EK, and Weir JT (2023), Phylogenomics reveal that mitochondrial capture and nuclear introgression characterize skua species proposed to be of hybrid origin, Syst. Biol. 72, 78-91. (free pdf)
Päckert M (2021), Free access of published DNA sequences fascilitates regular control of (meta-) data quality - an example from shorebird mitogenomes (Aves, Charadriiformes: Charadrius), Ibis 164, 336-342. (pdf)
Paton TA, Baker AJ, Groth JG, and Barrowclough GF (2003), RAG-1 sequences resolve phylogenetic relationships within Charadriiform birds, Mol. Phylogenet. Evol. 29, 268-278. (abstract)
Paton TA, and Baker AJ (2006), Sequences from 14 genes provide a well-supported phylogeny of Charadriiform birds congruent with the nuclear RAG-1 tree, Mol. Phylogenet. Evol. 39, 657-667. (abstract)
Pereira SL, and Baker AJ (2010), The enigmatic monotypic crab plover Dromas ardeola is closely related to pratincoles and coursers (Aves, Charadriiformes, Glareolidae), Genet. Mol. Biol. 33, 583-586. (pdf)
Pons JM., Hassanin A, and Crochet PA (2005), Phylogenetic relationships within the Laridae (Charadriiformes: Aves) inferred from mitochondrial markers, Mol. Phylogenet. Evol. 37, 686-699. (abstract)
Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, and Lemmon AR (2015), A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing, Nature 526, 569-573. (abstract)
Ribas CC, Aleixo A, Nogueira ACR, Miyaki CY, and Cracraft J (2012), A palaeobiogeographic model for biotic diversification within Amazonia over the past three million years, Proc. Roy. Soc. B. 279, 681-689. (abstract)
Sternkopf V (2011), "Molekulargenetische Untersuchung in der Gruppe der Möwen (Laridae) zur Erforschung der Verwandtschaftsbeziehungen und phylogeographischer Differenzierung", Ph.D. Dissertation, Ernst Moritz Arndt University of Greifswald. (pdf)
Tan HZ, Jansen JJFJ, Allport GA, Garg KM, Chattopadhyay B, Irestedt M, Pang SEH, Chilton G, Gwee CY, and Rheindt FE (2023), Megafaunal extinctions, not climate change may explain Holocene genetic diversity in Numenius shorebirds, eLife 12, e:85422. (free pdf)
Thomas GH, Wills MA, and Szekely T (2004), Phylogeny of shorbirds, gulls, and alcids (Aves: Charadrii) from the cytochrome-b gene: parsimony, Bayesian inference, minimum evolution, and quartet puzzling, Mol. Phylogenet. Evol. 30, 516-526. (abstract)